Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Int J Med Sci ; 21(5): 965-977, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38616996

RESUMO

Cardiac hypertrophy is the most prevalent compensatory heart disease that ultimately leads to spontaneous heart failure. Mounting evidence suggests that microRNAs (miRs) and endogenous hydrogen sulfide (H2S) play a crucial role in the regulation of cardiac hypertrophy. In this study, we aimed to investigate whether inhibition of miR-27a could protect against cardiac hypertrophy by modulating H2S signaling. We established a model of cardiac hypertrophy by obtaining hypertrophic tissue from mice subjected to transverse aortic constriction (TAC) and from cells treated with angiotensin-II. Molecular alterations in the myocardium were quantified using quantitative real time PCR (qRT-PCR), Western blotting, and ELISA. Morphological changes were characterized by hematoxylin and eosin (HE) staining and Masson's trichrome staining. Functional myocardial changes were assessed using echocardiography. Our results demonstrated that miR-27a levels were elevated, while H2S levels were reduced in TAC mice and myocardial hypertrophy. Further luciferase and target scan assays confirmed that cystathionine-γ-lyase (CSE) was a direct target of miR-27a and was negatively regulated by it. Notably, enhancement of H2S expression in the heart was observed in mice injected with recombinant adeno-associated virus vector 9 (rAAV9)-anti-miR-27a and in cells transfected with a miR-27a inhibitor during cardiac hypertrophy. However, this effect was abolished by co-transfection with CSE siRNA and the miR-27a inhibitor. Conversely, injecting rAAV9-miR-27a yielded opposite results. Interestingly, our findings demonstrated that glucagon-like peptide-1 (GLP-1) agonists could mitigate myocardial damage by down-regulating miR-27a and up-regulating CSE. In summary, our study suggests that inhibition of miR-27a holds therapeutic promise for the treatment of cardiac hypertrophy by increasing H2S levels. Furthermore, our findings unveil a novel mechanism of GLP-1 agonists involving the miR-27a/H2S pathway in the management of cardiac hypertrophy.


Assuntos
Estenose da Valva Aórtica , Insuficiência Cardíaca , MicroRNAs , Animais , Camundongos , Cardiomegalia/genética , Peptídeo 1 Semelhante ao Glucagon , MicroRNAs/genética , Cistationina gama-Liase
2.
Clin Epigenetics ; 16(1): 42, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491513

RESUMO

BACKGROUND: Congenital heart disease (CHD) is a prevalent congenital cardiac malformation, which lacks effective early biological diagnosis and intervention. MicroRNAs, as epigenetic regulators of cardiac development, provide potential biomarkers for the diagnosis and treatment of CHD. However, the mechanisms underlying miRNAs-mediated regulation of cardiac development and CHD malformation remain to be further elucidated. This study aimed to explore the function of microRNA-20b-5p (miR-20b-5p) in cardiac development and CHD pathogenesis. METHODS AND RESULTS: miRNA expression profiling identified that miR-20b-5p was significantly downregulated during a 12-day cardiac differentiation of human embryonic stem cells (hESCs), whereas it was markedly upregulated in plasma samples of atrial septal defect (ASD) patients. Our results further revealed that miR-20b-5p suppressed hESCs-derived cardiac differentiation by targeting tet methylcytosine dioxygenase 2 (TET2) and 5-hydroxymethylcytosine, leading to a reduction in key cardiac transcription factors including GATA4, NKX2.5, TBX5, MYH6 and cTnT. Additionally, knockdown of TET2 significantly inhibited cardiac differentiation, which could be partially restored by miR-20b-5p inhibition. CONCLUSIONS: Collectively, this study provides compelling evidence that miR-20b-5p functions as an inhibitory regulator in hESCs-derived cardiac differentiation by targeting TET2, highlighting its potential as a biomarker for ASD.


Assuntos
Dioxigenases , MicroRNAs , Humanos , Diferenciação Celular , Dioxigenases/genética , DNA/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
3.
J Fish Biol ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509782

RESUMO

Tumor necrosis factor α1 (TNFα) is a pleiotropic cytokine involved in immune regulation and cellular homeostasis, but the crucial role of TNFα in fish gut remained unclear. The current study aimed to evaluate the immunoregulatory function of TNFα1 on gut barrier in a novel hybrid fish (WR), which was produced by crossing white crucian carp (Carassius cuvieri, ♀) with red crucian carp (Carassius auratus red var, ♂). In this study, WR-tnfα1 sequence was identified, and a high-level expression was detected in the intestine. Elevated levels of WR-tnfα1 expressions were detected in immune-related tissues and cultured fish cells on stimulation. The appearance of vacuolization and submucosal rupture was observed in TNFα1-treated midgut of WR, along with elevated levels of goblet cell atrophy, whereas no significant changes were detected in most expressions of tight-junction genes and mucin genes. In contrast, WR receiving gut perfusion with WR-TNFα1 showed a remarkable decrease in antioxidant status in midgut, whereas the expression levels of apoptotic genes and redox responsive genes increased sharply. These results suggested that TNFα1 could exhibit a detrimental effect on antioxidant defense and immune regulation in the midgut of WR.

4.
J Agric Food Chem ; 72(7): 3302-3313, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38330904

RESUMO

Nicotinamide mononucleotide (NMN) has garnered substantial interest as a functional food product. Industrial NMN production relies on chemical methods, facing challenges in separation, purification, and regulatory complexities, leading to elevated prices. In contrast, NMN biosynthesis through fermentation or enzyme catalysis offers notable benefits like eco-friendliness, recyclability, and efficiency, positioning it as a primary avenue for future NMN synthesis. Enzymatic NMN synthesis encompasses the nicotinamide-initial route and nicotinamide ribose-initial routes. Key among these is nicotinamide riboside kinase (NRK), pivotal in the latter route. The NRK-mediated biosynthesis is emerging as a prominent trend due to its streamlined route, simplicity, and precise specificity. The essential aspect is to obtain an engineered NRK that exhibits elevated activity and robust stability. This review comprehensively assesses diverse NMN synthesis methods, offering valuable insights into efficient, sustainable, and economical production routes. It spotlights the emerging NRK-mediated biosynthesis pathway and its significance. The establishment of an adenosine triphosphate (ATP) regeneration system plays a pivotal role in enhancing NMN synthesis efficiency through NRK-catalyzed routes. The review aims to be a reference for researchers developing green and sustainable NMN synthesis, as well as those optimizing NMN production.


Assuntos
Trifosfato de Adenosina , Mononucleotídeo de Nicotinamida , Mononucleotídeo de Nicotinamida/metabolismo , Trifosfato de Adenosina/metabolismo , Biocatálise , NAD/metabolismo
5.
J Hepatocell Carcinoma ; 11: 15-27, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38213310

RESUMO

Background: Protein arginine methyltransferase (PRMT) family members have important roles in cancer processes. However, its functions in the regulation of cancer immunotherapy of hepatocellular carcinoma (HCC) are incompletely understood. This study aimed to investigate the roles of PRMT1 in HCC. Methods: Single-cell RNA sequencing (scRNA-seq) and clinicopathological data were obtained and used to explore the diagnostic and prognostic value, cellular functions and roles in immune microenvironment regulation of PRMT1 in HCC. The functions of PRMT1 were explored using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO), as well as gene set enrichment analysis (GSEA). TIMER and CIBERSORT were used to analyze the relationships between PRMT1 expression and immune cell infiltration. The STRING database was used to construct a protein-protein interaction (PPI) network. Results: PRMT1 was aberrantly expressed in HCC, which high expression was associated with tumor progression, worse overall survival (OS) and disease-free survival (DFS) of patients with HCC. PRMT1 was also associated with immune cell infiltration. Moreover, it was specifically expressed in immune cells, including exhausted CD8 T cells, B cells, and mono/macro cells in patients with immunotherapy. The expression of immune checkpoints was significantly increased in the high-PRMT1 expression groups of HCC patients. Regarding biological mechanisms, cell viability, migration and invasion, and the expression of genes related to fatty acid metabolism were suppressed in PRMT1 knockdown HCC cells. Moreover, genes co-expressed with PRMT1 were involved in the fatty acid metabolic process and enriched in fatty and drug-induced liver disease. Conclusion: Taken together, these results indicate that PRMT1 might exert its oncogenic effects via immune microenvironment regulation and fatty acid metabolism in HCC. Our finding will provide a foundation for further studies and indicate a potential clinical therapeutic target for liver cancer.

6.
Cell Prolif ; : e13593, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38185757

RESUMO

Ischemic heart disease, especially myocardial infarction (MI), is one of the leading causes of death worldwide, and desperately needs effective treatments, such as cell therapy. Cardiopulmonary progenitors (CPPs) are stem cells for both heart and lung, but their repairing role in damaged heart is still unknown. Here, we obtained CPPs from E9.5 mouse embryos, maintained their stemness while expanding, and identified their characteristics by scRNA-seq, flow cytometry, quantitative reverse transcription-polymerase chain reaction, and differentiation assays. Moreover, we employed mouse MI model to investigate whether CPPs could repair the injured heart. Our data identified that CPPs exhibit hybrid fibroblastic, endothelial, and mesenchymal state, and they could differentiate into cell lineages within the cardiopulmonary system. Moreover, intramyocardial injection of CPPs improves cardiac function through CPPs exosomes (CPPs-Exo) by promotion of cardiomyocytic proliferation and vascularization. To uncover the underlying mechanism, we used miRNA-seq, bulk RNA-seq, and bioinformatic approaches, and found the highly expressed miR-27b-3p in CPPs-Exo and its target gene Sik1, which can influence the transcriptional activity of CREB1. Therefore, we postulate that CPPs facilitate cardiac repair partially through the SIK1-CREB1 axis via exosomal miR-27b-3p. Our study offers a novel insight into the role of CPPs-Exo in heart repair and highlights the potential of CPPs-Exo as a promising therapeutic strategy for MI.

7.
Int J Biol Macromol ; 254(Pt 1): 127770, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37907174

RESUMO

TNFα is one of important cytokines belonging to TNF superfamily, which can exhibit a pleiotropic effect in immune modulation, homeostasis as well as pathogenesis. However, its immunoregulatory function on mucosal immunity in fish gut are still unclear. In this study, we aimed to investigated the immunoregulatory role of TNFα1 in midgut of white crucian carp (WCC). WCC-TNFα1 sequence and its deduced structure were firstly identified in WCC. Then, tissue-specific analysis revealed that high-level WCC-TNFα1 expression was detected in gill. After Aeromonas hydrophila and lipopolysaccharide (LPS) stimulated, increased trends of WCC-TNFα1 expressions were detected in immune-related tissues and cultured fish cells, respectively. WCC anal-intubated with WCC-TNFα1 fusion protein showed the increased levels of edema and fuzzy appearance in impaired villi, along with atrophy and reduction of goblet cells (GC). Moreover, the expression levels of tight junction (TJ) genes and mucin genes were consistently lower than those of the control (P < 0.05). WCC-TNFα1 treatment could sharply decrease antioxidant status in midgut, while the expression levels of caspase (CASP) genes, unfolded protein response (UPR) genes and redox response genes increased dramatically. Our results suggested that WCC-TNFα1 could exhibit a detrimental effect on antioxidant and mucosal immune regulation in midgut of WCC.


Assuntos
Carpas , Cyprinidae , Doenças dos Peixes , Animais , Carpas/genética , Carpas/metabolismo , Antioxidantes , Cyprinidae/genética , Fatores Imunológicos , Fator de Necrose Tumoral alfa/genética , Clonagem Molecular , Proteínas de Peixes/química , Imunidade Inata/genética
8.
ACS Macro Lett ; 13(1): 52-57, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38147539

RESUMO

The development of single-component materials with low cytotoxicity and multichannel fluorescence imaging capability is a research hotspot. In the present work, highly electron-deficient pyrazine monomers were covalently connected into a polyurethane backbone using addition polymerization with terminal poly(ethylene glycol) monomethyl ether units containing a high density of electron pairs. Thereby, an amphiphilic polyurethane-pyrazine (PUP) derivative has been synthesized. The polymer displays cluster-induced emission through compact inter- and/or intramolecular noncovalent interactions and extensive through-space electron coupling and delocalization. Molecular rigidity facilitates red-shifted emission. Based on hydrophilic/hydrophobic interactions and excitation dependence emission at low concentrations, PUP has been self-assembled into fluorescent nanoparticles (PUP NPs) without additional surfactant. PUP NPs have been used for cellular multicolor imaging to provide a variety of switchable colors on demand. This work provides a simple molecular design for environmentally sustainable, luminescent materials with excellent photophysical properties, biocompatibility, low cytotoxicity, and color modulation.


Assuntos
Polietilenoglicóis , Poliuretanos , Polietilenoglicóis/química , Polímeros/química , Pirazinas
9.
J Sci Food Agric ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37984850

RESUMO

BACKGROUND: Lactic acid bacteria (LABs) are widely present in foods and affect the flavour of fermented cultures. This study investigates the effects of fermentation with Lactobacillus acidophilus JYLA-16 (La), Lactobacillus plantarum JYLP-375 (Lp), and Lactobacillus rhamnosus JYLR-005 (Lr) on the flavour profile of blueberry juice. RESULTS: This study showed that all LABs strains preferentially used glucose rather than fructose as the carbon source during fermentation. Lactic acid was the main fermentation product, reaching 7.76 g L-1 in La-fermented blueberry juice, 5.86 g L-1 in Lp-fermented blueberry juice, and 6.41 g L-1 in Lr-fermented blueberry juice. These strains extensively metabolized quinic acid, whereas oxalic acid metabolism was almost unaffected. Sixty-four volatile compounds were identified using gas chromatography-ion mobility spectrometry (GC-IMS). All fermented blueberry juices exhibited decreased aldehyde levels. Furthermore, fermentation with La was dominated by alcohols, Lp was dominated by esters, and Lr was dominated by ketones. Linear discriminant analysis of the electronic nose and principal component analysis of the GC-IMS data effectively differentiated between unfermented and fermented blueberry juices. CONCLUSION: This study informs LABs selection for producing desirable flavours in fermented blueberry juice and provides a theoretical framework for flavour detection. © 2023 Society of Chemical Industry.

10.
Am J Cancer Res ; 13(9): 4057-4072, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818062

RESUMO

Osteosarcoma (OS) is the most frequent primary bone cancer, which is mainly suffered by children and young adults. While the current surgical treatment combined with chemotherapy is effective for the early stage of OS, advanced OS preferentially metastasizes to the lung and is difficult to treat. Here, we examined the efficacy of ten anti-OS peptide candidates from a trypsin-digested conditioned medium that was derived from the secretome of induced tumor-suppressing cells (iTSCs). Using OS cell lines, the antitumor capabilities of the peptide candidates were evaluated by assaying the alterations in metabolic activities, proliferation, motility, and invasion of OS cells. Among ten candidates, peptide P05 (ADDGRPFPQVIK), a fragment of aldolase A (ALDOA), presented the most potent OS-suppressing capabilities. Its efficacy was additive with standard-of-care chemotherapeutic agents such as cisplatin and doxorubicin, and it downregulated oncoproteins such as epidermal growth factor receptor (EGFR), Snail, and Src in OS cells. Interestingly, P05 did not present inhibitory effects on non-OS skeletal cells such as mesenchymal stem cells and osteoblast cells. Collectively, this study demonstrated that iTSC-derived secretomes may provide a source for identifying anticancer peptides, and P05 may warrant further evaluations for the treatment of OS.

11.
Macromolecules ; 56(19): 7721-7728, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37841531

RESUMO

The study of aggregate formation and its controllable effect on luminescence behavior has a far-reaching influence in establishing a universal aggregation photophysical mechanism. In this paper, we obtained clusters with different extents of aggregation by heat-induced or light-triggered aggregation of a new polyurethane derivative (PUE). The controllable regulation of multicolor fluorescence of a single (nondoped) polymeric material is realized. The luminescence behavior of PUE varies with microscopic control of the aggregation structure. Compared with the powder state, the enhanced atom-atom and group-group interactions of PUE-gel effectively limit the nonradiative transitions in the excited state and result in a red-shift in emission. This work avoids complex organic synthesis and demonstrates a simple strategy to induce aggregation and regulate the emitting color of macromolecules, providing a template for developing new materials for multicolor fluorescence. In addition, a pattern was constructed with encryption, anticounterfeiting, and information transmission functions which provide a proof-of-concept demonstration of the practical potential of PUE as a smart material.

12.
Soft Matter ; 19(37): 7093-7099, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37681740

RESUMO

The development of stimuli-responsive functional fluorescent hydrogels is of great significance for the realization of artificial intelligence. In the present work, we design and synthesize a stimulus-responsive hydrogel embedded with an aggregation-induced emission (AIE) monomer, in which the fluorescence brightness and intensity can be tuned. The hydrogel embedded with tetraphenylethene-grafted-poly[3-sulfopropyl methacrylate potassium salt] (TPE-PSPMA) as the functional element is prepared by the radical polymerization method. Among them, the TPE core exhibits adaptive fluorescence ability through the AIE effect, while the PSPMA chain provides tunable hydrophilic properties under an external stimulus. The effect of different cationic surfactants with different lengths of hydrophobic tails on the fluorescence properties of TPE-PSPMA in solution is systematically investigated. With cationic surfactants, such as cetyltrimethylammonium bromide (CTAB), the fluorescence intensity is gradually tuned from 1059 to 4623. And the fluorescence intensities increase with the growth of hydrophobic tails of surfactants, which results from hydrophobicity-induced electrostatic interactions among surfactants and polymer chains. Furthermore, an obvious tunable fluorescence feature of hydrogel copolymerized TPE-PSPMA is realized, resulting from the change of brightness and the dynamic increase of fluorescence intensity (from 1031 to 3138) for the hydrogel immersed in CTAB solution with different soaking times. Such a typical fluorescence-regulated behavior can be attributed to the AIE of the TPE-PSPMA chain and the electrostatic interaction between the surfactant and the anionic polymer chain. The designed TPE-PSPMA-based hydrogel is responsive to stimuli, inspiring the development of intelligent systems such as soft robots and smart wearables.

13.
J Cell Mol Med ; 27(10): 1436-1441, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37073435

RESUMO

Wolf-Hirschhorn syndrome candidate 1 (WHSC1) is a transcriptional regulatory protein that encodes a histone methyltransferase to control H3K36me2 modification. WHSC1 was upregulated and associated with poor prognosis in HCC. The elevated WHSC1 likely due to the alterations of DNA methylation or RNA modification. WHSC1 perhaps form a chromatin cross talk with H3K27me3 and DNA methylation to regulate transcription factors expression in HCC. Functional analysis indicated that WHSC1 was involved in DNA damage repair, cell cycle, cellular senescence and immune regulations. Furthermore, WHSC1 was associated with the infiltrating levels of B cell, CD4+, Tregs and macrophage cells. Therefore, our findings suggested that WHSC1 might function as a promotor regulator to affect the development and progression of HCC. Thus, WHSC1 could be a potential biomarker in predicting the prognosis and therapeutic target for patients with HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Senescência Celular/genética , Dano ao DNA/genética , Histonas/genética , Histonas/metabolismo , Imunidade , Neoplasias Hepáticas/genética , Proteínas Repressoras/genética , Fatores de Transcrição/metabolismo
14.
Neural Regen Res ; 18(10): 2285-2290, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37056149

RESUMO

Maintaining glutamate homeostasis after hypoxic ischemia is important for synaptic function and neural cell activity, and regulation of glutamate transport between astrocyte and neuron is one of the important modalities for reducing glutamate accumulation. However, further research is needed to investigate the dynamic changes in and molecular mechanisms of glutamate transport and the effects of glutamate transport on synapses. The aim of this study was to investigate the regulatory mechanisms underlying Notch pathway mediation of glutamate transport and synaptic plasticity. In this study, Yorkshire neonatal pigs (male, age 3 days, weight 1.0-1.5 kg, n = 48) were randomly divided into control (sham surgery group) and five hypoxic ischemia subgroups, according to different recovery time, which were then further subdivided into subgroups treated with dimethyl sulfoxide or a Notch pathway inhibitor (N-[N-(3, 5-difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester). Once the model was established, immunohistochemistry, immunofluorescence staining, and western blot analyses of Notch pathway-related proteins, synaptophysin, and glutamate transporter were performed. Moreover, synapse microstructure was observed by transmission electron microscopy. At the early stage (6-12 hours after hypoxic ischemia) of hypoxic ischemic injury, expression of glutamate transporter excitatory amino acid transporter-2 and synaptophysin was downregulated, the number of synaptic vesicles was reduced, and synaptic swelling was observed; at 12-24 hours after hypoxic ischemia, the Notch pathway was activated, excitatory amino acid transporter-2 and synaptophysin expression was increased, and the number of synaptic vesicles was slightly increased. Excitatory amino acid transporter-2 and synaptophysin expression decreased after treatment with the Notch pathway inhibitor. This suggests that glutamate transport in astrocytes-neurons after hypoxic ischemic injury is regulated by the Notch pathway and affects vesicle release and synaptic plasticity through the expression of synaptophysin.

15.
Exp Anim ; 72(2): 164-172, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-36288955

RESUMO

Itaconate, produced by aconitate decarboxylase 1 (ACOD1), which is encoded by immune-responsive gene 1 (Irg1), is one of the metabolites derived from the tricarboxylic acid cycle. It has been reported that exogenous itaconate plays an anti-inflammatory role in the progression of multiple diseases and pathological processes, including activated macrophage, ischemia-reperfusion injury, and acute lung injury. However, the role and specific mechanism of endogenous itaconate in endotoxemia-induced acute lung injury (ALI) remain unclear. The animal model of ALI in wild-type and Irg1-/- mice was constructed by LPS intraperitoneal injection. Ultrahigh-performance liquid chromatography-tandem mass spectroscopy (UPLC-MS/MS) analysis was performed to measure the quantity of endogenous itaconate. The protective effect of itaconate was investigated by the behavioral assessment and the levels of inflammatory cytokines. Acute lung injury was assessed by hematoxylin and eosin staining, total protein in BALF, and Evans blue leakage. Western blotting was used to detect the IRG1 expression and autophagic protein in the lung. We demonstrated that IRG1 was highly expressed in ALI and that endogenous itaconate was produced simultaneously and was 100 times higher. Using Irg1-/- mice, we found that endogenous itaconate was likely to exert an anti-inflammatory effect by activating NRF2 and promoting autophagy. Furthermore, autophagy was restrained by LPS but enhanced by 4-octyl itaconate (4-OI) pretreatment. Our study illustrated that a deficiency of IRG1/Itaconate aggravates ALI and that the IRG1/itaconate pathway protects against ALI. The protective mechanisms could be related to the facilitation of autophagy. Such findings may provide a theoretical foundation for the treatment of endotoxemia-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Endotoxemia , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Citocinas/metabolismo , Lesão Pulmonar Aguda/etiologia , Anti-Inflamatórios , Hidroliases
16.
Front Cardiovasc Med ; 9: 1073120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523355

RESUMO

Background: Cardiovascular disease (CVD) is a constellation of heart, brain, and peripheral vascular diseases with common soil hypothesis of etiology, and its subtypes have been well-established in terms of the albumin-mortality association. However, the association between albumin and the mortality of CVD as a whole remains poorly understood, especially the non-linear association. We aimed to investigate the association of albumin levels with long-term mortality of CVD as a whole. Materials and methods: This study included all CVD patients who participated in the National Health and Nutrition Examination Survey (NHANES 2011-2014). CVD was defined as coronary heart disease, stroke, heart failure, or any combination of these two or three diseases. Serum albumin was tertile partitioned: tertile 1, <4.1; tertile 2, 4.1-4.3; and tertile 3, >4.3 g/dl. COX proportional hazards model was used to assess the association between the serum albumin levels and CVD mortality. Restricted cubic spline (RCS) curves were used to explore the non-linear relationship. Results: A total of 1,070 patients with CVD were included in the analysis, of which 156 deaths occurred during a median 34 months of follow-up. On a continuous scale, per 1 g/dl albumin decrease was associated with an adjusted HR (95% CI) of 3.85 (2.38-6.25). On a categorical scale, as compared with tertile 3, the multivariable adjusted hazard ratio (95% CI) was 1.42 (0.74-2.71) for the tertile 2, and 2.24 (1.20-4.16) for the tertile 1, respectively, with respect to mortality. RCS curve analysis revealed a J-shaped association between albumin and CVD mortality. Conclusion: A J-shaped association between low serum albumin levels and increased long-term mortality of CVD has been revealed. This J-shaped association's implications for CVD prevention and treatment are deserving of being further studied.

18.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 38(3): 247-251, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36062794

RESUMO

Objective: To investigate the molecular mechanisms of Gupi Xiaoji decoction on apoptosis of human hepatoma cells HepG2. Methods: HepG2 cells were divided into 4 groups: control group (Control), blank serum group (Blank), Gupi Xiaoji Yin serum group (GPXJY) and cisplatin group (Positive). Eight duplicate holes were set in each group. After treated with Gupi Xiaoji Decoction-containing serum or cisplatin for 24 hours, the cell viability, the number of viable cells, the state of apoptosis, the cell cycle and the mitochondrial membrane potential were detected, and the level of lipid peroxidation (MDA) and glycolysis rate of the cells were detected. The expressions of apoptotic Bax, Bcl-2, and Caspase-3 proteins, and the contents of triacylglycerol (TG), cholesterol (TC), pyruvate and glucose in the cell supernatant were detected. Results: Compared with the control group, in the GPXJY group, the inhibition rate was increased (P<0.05), the number of cells was decreased, the number of apoptosis-positive cells was increased (P<0.01), the number of cells in the G1 phase was increased significantly (P<0.05), and the cell membrane potential was decreased (P<0.05,P<0.01), the glycolytic function was inhibited significantly, the MDA level was increased, the expressions of Bax and Caspase-3 in the GPXJY group were increased, and the expression of Bcl-2 was decreased (P<0.05, P<0.01). In cell supernatant, the TC, TG and glucose contents were decreased significantly, and the pyruvate content was increased significantly (P<0.05,P<0.01). Conclusion: Gupi Xiaoji Decoction can induce apoptosis of HepG2 cells and may play a role in energy metabolism.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Apoptose , Caspase 3/metabolismo , Cisplatino , Medicamentos de Ervas Chinesas , Glucose , Células Hep G2 , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Piruvatos , Proteína X Associada a bcl-2/metabolismo
19.
Int J Biometeorol ; 66(10): 2091-2104, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35933441

RESUMO

The evident climate jump after 2000 in China may have greatly influenced the production of winter wheat, which is one of the nation's major grain crops. To evaluate the impacts of climate change on winter wheat production and identify the climatic factors primarily responsible, we used daily meteorological data from 2244 stations and integrated indicators to examine the decadal changes in the potential plantable zone (PPZ), growth periods, and climatic suitability for winter wheat in China from 1985 to 1999 and from 2000 to 2014. The results showed the following: (1) The PPZ has decreased by approximately 9%, and the main reason may be the increased frequency of extreme cold events in northern China from 2000 to 2014. (2) In most of the PPZ, the suitable sowing date has been delayed, the potential maturity date has advanced, and total days during the potential growing season have significantly decreased because of the increasing temperature. (3) The suitable area and optimal area of winter wheat have significantly decreased by 9% and 13%, respectively. The changes in climatic suitability are affected by both temperature and radiation in the north, whereas the impact is more from precipitation in the south. The climate may be changing in a direction unsuitable for winter wheat. As global warming and climate extremes intensify in the future, winter wheat production may become more challenging, and adequate measures should be adopted to guarantee reliable and high yields.


Assuntos
Produtos Agrícolas , Triticum , China , Mudança Climática , Grão Comestível , Estações do Ano
20.
Cancers (Basel) ; 14(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35804814

RESUMO

PURPOSE: To develop a novel treatment option for Chondrosarcoma (CS) and inflammatory arthritis, we evaluated a counterintuitive approach of activating tumorigenic and inflammatory signaling for generating joint-protective proteomes. METHODS: We employed mesenchymal stem cells and chondrocytes to generate chondroprotective proteomes by activating PI3K signaling and the administration of TNFα. The efficacy of the proteomes was examined using human and mouse cell lines as well as a mouse model of CS. The regulatory mechanism was analyzed using mass spectrometry-based whole-genome proteomics. RESULTS: While tumor progression and inflammatory responses were promoted by activating PI3K signaling and the administration of TNFα to CS cells and chondrocytes, those cells paradoxically generated a chondroprotective conditioned medium (CM). The application of CM downregulated tumorigenic genes in CS cells and TNFα and MMP13 in chondrocytes. Mechanistically, Hsp90ab1 was enriched in the chondroprotective CM, and it immunoprecipitated GAPDH. Extracellular GAPDH interacted with L1CAM and inhibited tumorigenic behaviors, whereas intracellular GAPDH downregulated p38 and exerted anti-inflammatory effects. CONCLUSIONS: We demonstrated that the unconventional approach of activating oncogenic and inflammatory signaling can generate chondroprotective proteomes. The role of Hsp90ab1 and GAPDH differed in their locations and they acted as the uncommon protectors of the joint tissue from tumor and inflammatory responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...